Mark Scheme (SAM)

Pearson Edexcel International Advanced Subsidiary in Chemistry

Unit 2: Application of Core Principles of Chemistry

All the material in this publication is copyright

© Pearson Education Ltd 2013

General marking guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed-out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of Quality of Written Communication, are being assessed. The strands are as follows:
 - i. ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
 - ii. select and use a form and style of writing appropriate to purpose and to complex subject matter
 - iii. organise information clearly and coherently, using specialist vocabulary when appropriate.

Using the Mark Scheme

Examiners should NOT give credit for incorrect or inadequate answers, but allow candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected, it may still be creditworthy.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/	Means that the responses are alternatives and either answer	
	should receive full credit.	
()	Means that a phrase/word is not essential for the award of the	
	mark, but helps the examiner to get the sense of the expected	
	answer.	
Bold	Phrases/words in bold indicate that the meaning of the phrase or	
	the actual word is essential to the answer.	
ecf/TE/cq		
	a wrong answer given in an earlier part of a question is used	
	correctly in answer to a later part of the same question.	

Candidates must make their meaning clear to the examiner to gain the mark. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions that involve the writing of continuous prose require candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where Quality of Written Communication is likely to be particularly important are indicated (Quality of Written Communication) in the mark scheme, but this does not preclude others.

Section A

Question Number	Answer	Mark
1	D	(1)
Question Number	Answer	Mark
2	В	(1)
Question Number	Answer	Mark
3	С	(1)
Question Number	Answer	Mark
4	Α	(1)
Question Number	Answer	Mark
5	С	(1)
Question Number	Answer	Mark
6	В	(1)
Question Number	Answer	Mark
7	С	(1)
Question Number	Answer	Mark
8	Α	(1)
Question Number	Answer	Mark
9	В	(1)
		· ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
Question Number	Answer	Mark
10	D	(1)
		(-/
Question Number	Answer	Mark
11	D	(1)
	1	, (-)
Question Number	Answer	Mark
12	В	(1)
1	<u> </u>	1 (-)

Question	Answer	Mark
Number		
13	В	(1)
Question	Answer	Mark
Number		
14	С	(1)
_		
Question	Answer	Mark
Number		
15	A	(1)
	-	
Question	Answer	Mark
Number		
16	В	(1)
0	A	
Question Number	Answer	Mark
17	D	(1)
1/	טן	(1)
Question	Answer	Mark
Number	Allswei	Maik
18	A	(1)
10	^	(±)
Question	Answer	Mark
Number	7.11.017.01	Hark
19	С	(1)
	1 -	(-)
Question	Answer	Mark
Number		
20	С	(1)

Total for Section A = 20 Marks

Section B

Question Number	Acceptable Answer	Reject	Mark
21(a)(i)	$Ba(s) + 2H2O(I) \rightarrow Ba(OH)2(aq) + H2(g)$		
	OR		
	Ba(s) + $2H_2O(I) \rightarrow Ba^{2+}(aq) + 2OH^{-}(aq) + H_2(g)$	Ba ₂ H ₂ O(aq) BaO ₂	
	First mark:	BuO ₂	(2)
	Correct products.		
	Second mark:		
	State symbols and balancing.		

Question Number	Acceptable Answer	Reject	Mark
21(a)(ii)	First mark:	Inclusion of oxygen changes	
	Ba(increases in ON) from 0 to +2.	will lose 1 mark.	
	Second mark:		(2)
	H (decreases in ON) from +1 to 0.		(2)
	TE from (a)(i).		
	Stand-alone marks.		

Question Number	Acceptable Answer	Mark
21(b)	$Ba(OH)_2 + 2HCI \rightarrow BaCl_2 + 2H_2O$	
	IGNORE state symbols even if incorrect.	
	ALLOW $H^+ + OH^- \rightarrow H_2O$	(1)
	TE from (a)(i): BaO + 2HCl \rightarrow BaCl ₂ + H ₂ O	

Question Number	Acceptable Answer	Reject	Mark
21(c)	White precipitate/white solid/white crystals (rather than colourless solution). (1) Barium sulfate is insoluble (whereas barium chloride is soluble). (1) Stand-alone marks.	`Cloudy' alone	(2)

Question Number	Acceptable Answer	Reject	Mark
21(d)(i)	If flame test is described in (d)(i) then award appropriate marks for (d)(ii).		
	A correct decomposition equation given in (d)(i) would score 1 mark.		
	Allow valid discussion of thermal stability appearing in (d)(ii) for mark in (d)(i).		
	Barium carbonate is more thermally stable	Just 'barium'	
	(than magnesium carbonate)/requires more heating/needs a higher temperature/decomposes more slowly/produces carbon dioxide more slowly.	Just 'produces more carbon dioxide'	(2)
	OR	Just	
	Reverse argument (MgCO $_3$ decomposes faster).	'magnesium'	
	ALLOW BaCO ₃ does not decompose on heating but MgCO ₃ does. (1)		
	$MCO_3 \rightarrow MO + CO_2$ Where M stands for Mg or Ba. (1)		
	IGNORE state symbols even if incorrect.		

Question Number	Acceptable Answer	Reject	Mark
21(d)(ii)	Flame test or description of: Mg does not colour flame. ALLOW colourless/clear. (1)	Magnesium gives white/bright flame	
	Ba: (pale/apple) green flame. (1) Stand-alone marks.	'Blue-green' Instrument analysis	(2)

Total for Question 21 = 11 Marks

Question Number	Acceptable Answer	Reject	Mark
22(a)(i)	Alcohol/ethanol (as solvent for NaOH) IGNORE heat/pressure.	Any other reagents	(1)

Question Number	Acceptable Answer	Mark
22(a)(ii)	Elimination	(1)

Question Number	Acceptable Answer	Reject	Mark
22(a)(iii)	Water (as solvent for NaOH)/aqueous	Aqueous silver	(1)
	(NaOH)/aqueous (ethanol)	nitrate	(-)

Question Number	Acceptable Answer	Reject	Mark
22(a) (iv)	CH_3 δ^+ CH_3 O		
	$\begin{array}{c} CH_3 \\ H \longrightarrow C \\ CH_5 \\ CH \longrightarrow C_2H_5 \end{array} \longrightarrow \begin{array}{c} H \longrightarrow CH_3 \\ HO \longrightarrow C \\ C_2H_5 \end{array} \longrightarrow \begin{array}{c} CH_3 \\ HO \longrightarrow C \\ C_2H_5 \end{array} \longrightarrow \begin{array}{c} CH_3 \\ HO \longrightarrow C \\ C_2H_5 \end{array} \longrightarrow \begin{array}{c} CH_3 \\ HO \longrightarrow C \\ C_2H_5 \end{array} \longrightarrow \begin{array}{c} CH_3 \\ HO \longrightarrow C \\ C_2H_5 \end{array} \longrightarrow \begin{array}{c} CH_3 \\ HO \longrightarrow C \\ C_2H_5 \end{array} \longrightarrow \begin{array}{c} CH_3 \\ HO \longrightarrow C \\ C_2H_5 \end{array} \longrightarrow \begin{array}{c} CH_3 \\ HO \longrightarrow C \\ C_2H_5 \end{array} \longrightarrow \begin{array}{c} CH_3 \\ HO \longrightarrow C \\ C_2H_5 \end{array} \longrightarrow \begin{array}{c} CH_3 \\ HO \longrightarrow C \\ C_2H_5 \end{array} \longrightarrow \begin{array}{c} CH_3 \\ HO \longrightarrow C \\ C_2H_5 \end{array} \longrightarrow \begin{array}{c} CH_3 \\ HO \longrightarrow C \\ C_2H_5 \end{array} \longrightarrow \begin{array}{c} CH_3 \\ HO \longrightarrow C \\ C_2H_5 \end{array} \longrightarrow \begin{array}{c} CH_3 \\ C_2H_5 \longrightarrow CH_3 \longrightarrow \begin{array}{c} CH_3 \\ C_2H_5 \longrightarrow CH_3 \longrightarrow$		
	ALLOW		
	$\begin{array}{c} CH_3 \\ \downarrow \delta + CI \\ C_2H_5 \end{array} \longrightarrow \begin{array}{c} CH_3 \\ \downarrow CI \\ \downarrow C_2H_5 \end{array} + CI - CI$		
	$H \longrightarrow C^{+} \longrightarrow C_{2}H_{5}$ CH_{3} $H \longrightarrow C \longrightarrow C$ CH_{3} $H \longrightarrow C \longrightarrow C$ CH_{3} CH_{3} CH_{3}		(2)
	Arrow from OH ⁻ to appropriate C (connected/previously connected) to Cl. (1)	OH without charge	
	Arrow from C-Cl bond to Cl producing Cl ⁻ .	Cl (chlorine radical)	
	ACCEPT three dimensional diagrams ; displayed formulae; CH_3CH_2 for C_2H_5 Use of C_4H_9Cl as formula can score 1 for arrow from C-Cl bond to Cl.		
	Lone pair on hydroxide ion need not be shown.		
	ALLOW solid lines instead of dotted lines in the transition state.		

Question Number	Acceptable Answer		Reject	Mark
22(b)	Steamy/misty/white and fumes/gas.	(1)	White smoke	
	IGNORE fizzing.		Solid	
	$CH_3CH_2CH(OH)CH_3 + PCI_5 \rightarrow$ $CH_3CH_2CHCICH_3 + HCI + POCI_3$	(1)	CH₃CH₂CH₂CH₂ OH	
	ALLOW C ₄ H ₉ OH and C ₄ H ₉ C.I			(2)
	ALLOW PCI₃O.		C ₄ H ₁₀ O	
	ACCEPT displayed formulae.			
	ALLOW missing bracket in alcohol. Stand-alone marks.			

Question Number	Acceptable Answer	Reject	Mark
22(c)(i)	With butan-2-ol: (change from orange) to green/blue. (1)	Reference to gas given off or formation of precipitate	
	With A : remains orange/no change. (1)	Green-blue	(2)
	ALLOW 'no reaction'.	Just 'nothing'	
	Any reference to 'yellow': maximum 1 mark.		

Question Number	Acceptable Answer	Mark
22(c)(ii)	CH ₃ CH ₂ COCH ₃ ALLOW displayed or skeletal.	(1)

Question Number	Acceptable Answer	Reject	Mark
22(c)(iii)	Absorption/peak/trough for O-H/C-O/OH bond/alcohol CO bond would disappear. OR	Just OH/CO Just 'alcohol peak'	(1)
	Absorption/peak/trough for C=O/CO ketone bond would appear.	Just `ketone peak'	

Total for Question 22 = 11 Marks

Question Number	Acceptable Answer	Reject	Mark
23(a)	London (forces)/van der Waals' (forces)/temporary dipole-induced dipole	Dipole-dipole	
	(attractions)/dispersion/forces/	Permanent	
	instantaneous dipole-dipole	dipole-dipole	(1)
		Just abbreviations, e.g. ID-ID, VdW	

Question Number	Acceptable Answer	Mark
23(b)	18/eighteen	(1)

Question Number	Acceptable Answer	Reject	Mark
23(c)	(Permanent) dipole-dipole attractions (also) present.	Hydrogen bonds Reference to CH ₃ F having more electrons than F ₂	(1)

Question Number	Acceptable Answer	Mark
23(d)	First mark: Hydrogen bonds (also) present.	
	Second mark:	(2)
	Which are stronger/which require more energy to break than dipole-dipole/London forces/van der Waals' forces/or strongest intermolecular force.	

Question Number	Acceptable Answer	Reject	Mark
23(e)	HCl does not have hydrogen bonds (between molecules)	Just `chlorine does not have hydrogen	(1)
	IGNORE references to electronegativity	bonds'	

Total for Question 23 = 6 Marks

Sample Assessment Materials

Question Number	Acceptable Answer	Mark
24(a)(i)	In (a) any units given must be correct. Penalise once only. IGNORE SF except 1SF. Penalise once only. TE throughout.	(1)
	$((0.1 \times 11.6)/(1000) = 1.16 \times 10^{-3}/0.00116/0.0012/1.2 \times 10^{-3})$ (mol)	

	Acceptable Answer	Reject	Mark
Number			
24(a)(ii)		6 x 10 ⁻⁴	
	I ₂ react with thiosulfate)		(1)
	6.0x 10 ⁻⁴ if 1.2 x 10 ⁻³ used		

Question Number	Acceptable Answer	Reject	Mark
24(a)(iii)	$((50x0.25)/1000) = 1.25x10^{-2}/12.5x10^{-3}$ /0.0125 (mol)	0.012	(1)

Question Number	Acceptable Answer	Reject	Mark
24(a)(iv)	= Answer to (a)(iii) - answer to a(ii)		
	$(1.25 \times 10^{-2} - 5.8 \times 10^{-4}) = 1.192 \times 10^{-2}$ /0.01192 (mol reacted with tin)		(1)
	1.19 x10 ⁻² /0.0119 (mol) if 6.0x 10 ⁻⁴ used		(1)
	ALLOW 1.2 x 10 ⁻² /0.012 (mol)	1.20 x 10 ⁻²	

Question Number	Acceptable Answer	Mark
24(a)(v)	Mass of tin = answer to (a)(iv) x118.7/	
	= 1.414904/ 1.415 g (1)	
	% tin = (1.415×100) = 13.803941 10.25 = 13.8 % (1)	
	TE from mass if only 1 error in its calculation.	(2)
	13.83/13.8% if 1.194 x 10 ⁻² used	
	If answer to(a)(iv) = 5.8×10^{-4} mol I ₂ this gives 0.068846 g Sn and 0.67167 % Sn scores. (2)	
	Correct answer without working scores. (2)	
	ALLOW (1) for 17.5% of SnO ₂	

Question Number	Acceptable Answer	Reject	Mark
24(b)(i)	Divide solution into separate portions for titration.	Just 'repeat the titration'	(1)
		Use starch	

Question Number	Acceptable Answer	Reject	Mark
24(b)(ii)	$(0.05 \times 2 \times 100) = (\pm) 0.86\%$ 11.6		(1)
	ALLOW 0.9%.	0.90%	

Question Number	Acceptable Answer	Reject	Mark
	Use more dilute thiosulfate (to make	Use more rock	
	titration reading bigger)/Use a larger		(1)
	volume or moles of excess iodine.		

Question Number	Acceptable Answer	Reject	Mark
24(c)	(Pale) yellow/straw coloured to colourless.	Clear for colourless	
		Blue/black to colourless	(1)
		Orange/grey/br own	

Total for Question 24 = 10 Marks

Total for Section B = 38 Marks

Section C

Question Number	Acceptable Answer	Mark
25(a)(i)	2.2 g in 1000 g = 2200 g per 1 000 000 g/2200 (ppm) (greater than 60)	
	OR	
	60ppm = 0.060 (g dm ⁻³) (less than 2.2)	
	OR	(1)
	$2.2g \text{ dm}^{-3} = 0.22\%$ which is more than $60ppm = 0.006\%$ (Both values needed as neither is given in question)	
	OR	
	$2.2 \div 1000 = 2.2 \times 10^{-3}$ and $60 \div 1000000 = 6 \times 10^{-5}$	

Question Number	Acceptable Answer		Mark
25(a)(ii)	Cl_2 (g/aq) + $2Br^-$ (aq) $\rightarrow 2Cl^-$ (aq) + Br_2 (aq)		
	Correct species.	(1)	(2)
	Balancing and state symbols.	(1)	

Question Number	Acceptable Answer	Reject	Mark
25(a)(iii)	(Colourless to) yellow/orange/brown/red-brown colour (or any combination of these colours) appears.	Effervescence	(1)

Question Number	Acceptable Answer	Mark
25(a)(iv)	Addition of hydrochloric acid increases the concentration of H^+ . (1)	
	Equilibrium shifts to the left/favours the backwards reaction/ H^+ combines with Br^- and BrO^- to make H_2O and Br_2 (1)	
	OR	(2)
	The equilibrium will not produce H ⁺ . (1)	
	So forward reaction will not occur. (1)	
	Stand-alone marks.	

Question Number	Acceptable Answer	Mark
25(a)(v)	First mark:	
	The equilibrium shifts to the right/favours the forward reaction.	(2)
	Second mark:	(-)
	To absorb added heat (energy)/in the endothermic/positive ΔH .	

Question Number	Acceptable Answer	Reject	Mark
25(a)(vi)	Greater proportion of/more molecules with energy more than (or equal to) activation energy/sufficient energy to react (at higher temperature).	Atoms Lowers activation energy	(1)
	ALLOW particles. ALLOW 'overcome' for 'more than'.	Just 'more successful collisions'	

Question Number	Acceptable Answer	Mark
25(a) (vii)	First mark:	
	Bromine (atoms) are (simultaneously) oxidized from 0 to $+1$ in $\mathrm{BrO}^{\text{-}}.$	(2)
	Second mark:	
	And reduced to -1 in Br ⁻ .	

Question Number	Acceptable Answer	Reject	Mark
25(b)(i)	First mark: The forward and backward reactions occur at the same rate. Second mark: The concentrations or amounts or moles of reactants and products remain constant/intensive or macroscopic properties (e.g. colour) are constant.	Concentrations of products and reactants are the same	(2)
	IGNORE reference to 'closed system'.		

Question Number	Acceptable Answer		Mark
*25(b) (ii) Quality of	Equilibrium shifts to the right so more $CO_2(g)$ dissolves/equilibrium shifts to the right so reducing the concentration of $CO_2(aq)$.	(1)	
Written Commun	So amount of CO ₂ in atmosphere/gaseous decreases.	(1)	(2)
ication	Second mark depends on first unless qualified by a near miss.		

Question Number	Acceptable Answer	Reject	Mark
25(b) (iii)	(Bonds) bend/stretch/vibrate (more)/bonds change polarity or dipole (moment)	Molecules vibrate	(1)
		Bonds break	

Question Number	Acceptable Answer	Reject	Mark
_	First mark: Infrared radiation/heat is absorbed by greenhouse gases/by carbon dioxide and water. And one of the following for the second mark: When energy from the sun is (re-)emitted from the earth's surface (allow 'reflected'). OR IR/heat cannot escape from earth's	IR absorbed from the sun UV radiation	Mark (2)
	atmosphere. OR IR/heat is (re-)emitted back to the earth.		

Question Number	Acceptable Answer	Reject	Mark
25(b)	First mark:		
(v) Quality of Written	Anthropogenic climate change is caused by human activity.		
Commun	Second mark:		
	Natural climate change is caused by volcanic eruptions etc.		
	Up to any three of the following to a maximum of 4 marks:		
	Water vapour levels always relatively constant/water levels fluctuate normally /water levels vary only to a small extent.		(4)
	CO ₂ levels increasing due to (fossil) fuel combustion/deforestation/industrial revolution.	Reference to UV	
	CO ₂ molecules absorb more IR radiation than H ₂ O molecules OR CO ₂ molecules have a greater 'greenhouse effect' than H ₂ O molecules .	Reference to ozone depletion negates this mark	
	Increase in CO_2 levels has accompanied rise in global temperatures.		
	Concern due to melting of ice packs/rising sea levels/flooding/change in sea pH etc.		

Total for Question 25 = 22 marks

Total for Section C = 22 Marks

Total for Paper = 80 marks